

APPLICATION STUDY OF POST-TREATED HIGH-STRENGTH STEEL JOINTS IN INDUSTRIAL CRANE FRAMEWORKS

Martin Leitner¹, Stefan Gerstbrein¹, Klaus Krautgartner², Michael Stoschka¹

¹Montanuniversität Leoben, Chair of Mechanical Engineering, Austria
²Konrad Forsttechnik GmbH, Austria

Competence Centers for Excellent Technologies

Introduction

Experimental fatigue tests

 Evaluation of fatigue strength increase by post-treatment methods
 Statistically verified data

Service load measurements

$$\begin{pmatrix} F_X(t) \\ F_Y(t) \\ F_Z(t) \end{pmatrix} = Pseudoinv \begin{vmatrix} \varepsilon_{1,X} & \varepsilon_{1,Y} & \varepsilon_{1,Z} \\ \varepsilon_{2,X} & \varepsilon_{2,Y} & \varepsilon_{2,Z} \\ \varepsilon_{3,X} & \varepsilon_{3,Y} & \varepsilon_{3,Z} \end{vmatrix} \cdot \begin{pmatrix} \varepsilon_{1,measurement}(t) \\ \varepsilon_{2,measurement}(t) \\ \varepsilon_{3,measurement}(t) \end{pmatrix}$$

- Built-up of methodology to measure the service loads during operation
- Classification of results

Numerical analysis of structural details

 Numerical analysis of complete structure and critical details by solid, shell and submodels

Local fatigue assessment

- Local fatigue behaviour of as-welded and posttreated condition
- Lifetime assessment

Light-weight crane frameworks

HFMI (High Frequency Mechanical Impact) as post-treatment

Improvement of notch topography

Change of residual stresses

- Surface residual stresses in transversal (load) direction (T-joint, S960)
 - As-welded: High tensile residual stresses at weld toe region (+300MPa)
 - HFMI-treated: Superposition of compressive residual stresses
 - → Reduction down to -350MPa

End-of-seam specimens – HFMI-treatment

- HFMI-treatment at the weld toe as post-treatment method (PIT-System)
 - HFMI-Parameters: p=6bar (~90psi), v=20-30cm/min, f=90Hz
 - Radius of the hardened pin: R=2mm

End-of-seam specimens – Nominal S/N-curves

 Major increase of fatigue strength by HFMI-treatment at the weld toe due to high notch effect at weld toe region (small, highly stressed volume)

Service load measurements

 Evaluation of service loads at crane end based on pseudoinverse approach

$$F_{X} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \longrightarrow \mathcal{E}_{X} = \begin{pmatrix} \mathcal{E}_{1,X} \\ \mathcal{E}_{2,X} \\ \mathcal{E}_{3,X} \end{pmatrix}$$

$$F_{Y} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \longrightarrow \mathcal{E}_{Y} = \begin{pmatrix} \mathcal{E}_{1,Y} \\ \mathcal{E}_{2,Y} \\ \mathcal{E}_{3,Y} \end{pmatrix}$$

$$F_{Z} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \longrightarrow \mathcal{E}_{Z} = \begin{pmatrix} \mathcal{E}_{1,Z} \\ \mathcal{E}_{2,Z} \\ \mathcal{E}_{3,Z} \end{pmatrix}$$

Standard load cases F_X , F_Y and F_Z

Strain gauge and cylinder displacement measurements in service

Service loads $F_X(t)$, $F_Y(t)$ and $F_Z(t)$

Numerical analysis – Complete model of framework

- Built-up of solid and shell model of complete framework
- Good agreement of numerical results between both modeling techniques
- Selection of simulation method depends on
 - Pre-processing effort and computational time
 - Contact modeling between sheets and seams
- Detailed analysis of critical end-of-seam detail by submodeling technique
 - Fine mesh to evaluate local stress behaviour for fatigue assessment properly

Numerical analysis – Submodel technique

- Solid submodel of specific framework detail
- Mesh according to IIW-guideline [Fri2009]
- Displacement data at cross-section points from complete solid and shell framework model
- Maximum principal stress at weld toe based on
 - Complete solid model: 110MPa
 - Complete shell model: 91MPa
- Difference caused by minor dissimilar displacements (solid/shell) for framework

Displacement from complete solid model

Displacement from complete shell model

Displacement from complete solid model

Crack at toe

Local fatigue assessment

- Effective notch stress concept according to IIW-recommendation [Hob2009]
 - Reference radius of ρ_f =1mm based on [Neu1968, Rad1996]
 - Slope in finite lifetime region for as-welded condition: *m*=3

- Proposal of HFMI notch stress fatigue strength according to [Yil2013]
 - Reference radius: ρ_f =1mm
 - Slope in finite lifetime region: *m*=5
 - One fatigue class (about 12.5%) increase in fatigue strength for every 200MPa increase in ultimate base material strength f_y

Local fatigue assessment

 Notch stress fatigue assessment shows a good accordance of the fatigue tests and the recommended (as-welded) and proposed (HFMI-treated) values

Summary and Outlook

- Presentation of comprehensive methodology to assess the lifetime of crane frameworks based on experimental fatigue tests, service load measurements, numerical analyses and local fatigue behaviour
- Nominal S/N-curves of investigated HFMI-treated end-of-seam specimens show a significant beneficial increase of the fatigue strength especially in the high-cycle fatigue region up to 250% compared to the as-welded condition
- Numerical analyses involving solid, shell and submodel technique demonstrate the advantages and drawbacks of each method
- Results of the comparative local fatigue assessment are in good agreement to the proposed HFMI-treatment fatigue guideline

Outlook

- Influence of applied shell elements to study numerical effects
- Determination of stress gradient effect for HFMI-treated joints
- Enhancement of variable amplitude HFMI fatigue test data and implementation in recent guidelines [Mik2013]

References

[Fri2009]	Fricke W.: Guideline for the Fatigue Assessment by Notch Stress Analysis for Welded Structures, IIW-Document XIII-2240r1-08/XV-1289r1-08, 2009
[Hob2009]	Hobbacher A.: IIW Recommendations for Fatigue Design of Welded Joints and Components, WRC Bulletin 520, The Welding Research Council, New York, 2009
[Lei2011]	Leitner M., Stoschka M., Schörghuber M., Eichlseder W.: Fatigue Behaviour of High-Strength Steels using an Optimized Welding Process and High Frequency Peening Technology, Proceedings of the International Conference of the International Institute of Welding, Chennai/India, pp. 729-736, 2011
[Lei2012]	Leitner M., Stoschka M.: Influence of steel grade on the fatigue strength enhancement by high frequency peening technology on longitudinal fillet weld gusset, Journal of Engineering and Technology, Vol. 1, Issue 3, pp. 80-90, 2012
[Lei2014]	Leitner M., Stoschka M., Eichlseder W.: Fatigue enhancement of thin-walled high-strength steel joints by high frequency mechanical impact treatment, Welding in the World, Vol. 58, No. 1, pp. 29-39, 2014
[Mik2013]	Mikkola E., Doré M., Khurshid M.: Fatigue strength of HFMI treated structures under high R-ratio and variable amplitude loading, Procedia Engineering, Vol. 66, pp. 161-170, 2013
[Neu1968]	Neuber H.: Über die Berücksichtigung der Spannungskonzentration bei Festigkeitsberechnungen, Konstruktion im Maschinen-, Apparate- und Gerätebau, Vol. 20, No. 7, pp. 245-251, 1968
[Ped2010]	Pedersen M., Mouritsen O., Hansen M., Andersen J.: Experience with the Notch Stress Approach for Fatigue Assessment of Welded Joints, Proceedings of the Swedish Conference on Light Weight Optimised Welded Structures, Borlänge/Sweden, pp. 1-11, 2010
[Pit2014]	Pitec GmbH, http://www.pitec-gmbh.com/, 2014
[Rad1990]	Radaj D.: Design and Analysis of Fatigue Resistant Welded Structures, 2nd edition, Cambridge: Woodhead Publ. Ltd.,1990
[Sch2012]	Schijve J.: Fatigue predictions of welded joints and the effective notch stress concept, International Journal of Fatigue, Vol. 45, pp. 31-38, 2012
[Yil2013]	Yildirim H., Marquis G., Barsoum Z.: Fatigue assessment of high frequency mechanical impact (HFMI)-improved fillet welds by local approaches, International Journal of Fatigue, Vol. 52, pp. 57-67, 2013
[Yil2014]	Yildirim H., Marquis G.: Fatigue design of axially-loaded high frequency mechanical impact treated welds by the effective

notch stress method, Materials and Design, Vol. 58, pp. 543-550, 2014